*
Inductive learning with quantitative dependent variables is called regression , Or continuous variable prediction

*
Inductive learning with qualitative dependent variable is called classification , Or discrete variable prediction
Ｐ（ＡＢ）＝　Ｐ（Ｂ｜Ａ）Ｐ（Ａ）
P（A） be called A Prior probability of events , In general , think A Probability of occurrence .
P（B|A） It's called likelihood , yes A It occurs when the assumptions are true B The probability of .
P（A|B） It's called posterior probability , stay B In case of occurrence A The probability of , That is, the probability to be calculated .
P（B） It's called a normalized constant , and A The definition of a priori probability is similar , In general ,B Probability of occurrence of .

（1） Gauss naive Bayes （Gaussian Naive Bayes）;
（2） Polynomial naive Bayes （Multinomial Naive Bayes）;
（3） Bernoulli naive Bayes （Bernoulli Naive Bayes）.

among , Gaussian naive Bayes uses Gaussian probability density formula to classify and fit . Polynomial naive Bayes are often used in high dimensional vector classification , The most common scenario is article classification . Bernoulli naive Bayes is a process of classifying vectors of boolean type eigenvalues .
from sklearn.naive_bayes import GaussianNB # Gaussian Bayesian classification # 0： Fine 1： Yin 2： precipitation 3： cloudy
data_table = [["date", "weather"], [1, 0], [2, 1], [3, 2], [4, 1], [5, 2], [6,
0], [7, 0], [8, 3], [9, 1], [10, 1]] # The weather of the day X = [, , , , , ,
, , ] # The weather of the day corresponds to the weather of the following day y = [1, 2, 1, 2, 0, 0, 3, 1, 1] #
Now put the training data and the corresponding classification into the classifier for training clf = GaussianNB().fit(X, y) # BernoulliNB() bernoulli
ComplementNB() polynomial GaussianNB() Gaussian p = [] print(clf.predict(p))
The result is .

<> One , Gaussian
>>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1],
[2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from
sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y)
GaussianNB(priors=None, var_smoothing=1e-09) >>> print(clf.predict([[-0.8,
-1]]))  >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB(priors=None, var_smoothing=1e-09) >>> print(clf_pf.predict([[-0.8,
-1]])) 
<> Two , polynomial
>>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y =
np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import ComplementNB
>>> clf = ComplementNB() >>> clf.fit(X, y) ComplementNB(alpha=1.0,
class_prior=None, fit_prior=True, norm=False) >>> print(clf.predict(X[2:3])) 
<> Three , bernoulli
>>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y =
np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0,
class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) 

Technology
Daily Recommendation
views 4