yolov5和yolov4很像

Mosaic数据增强

1、每次读取四张图片。

2、分别对四张图片进行翻转、缩放、色域变化等,并且按照四个方向位置摆好。
3、进行图片的组合和框的组合

对于小目标的检测效果还是很不错的

自适应锚框计算

在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框。

在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数。

因此初始锚框也是比较重要的一部分,比如Yolov5在Coco数据集上初始设定的锚框:

3)自适应图片缩放

在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。

比如Yolo算法中常用416*416,608*608等尺寸,比如对下面800*600的图像进行缩放。

Yolov5的代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边。

Neck

Yolov5现在的Neck和Yolov4中一样,都采用FPN+PAN的结构,但在Yolov5刚出来时,只使用了FPN结构,后面才增加了PAN结构,此外网络中其他部分也进行了调整。

因此,大白在Yolov5刚提出时,画的很多结构图,又都重新进行了调整。

Cost Function

YOLO 系列的损失计算是基于 objectness score, class probability score,和 bounding box
regression score.

YOLO V5使用 GIOU Loss作为bounding box的损失。

YOLO V5使用二进制交叉熵和 Logits 损失函数计算类概率和目标得分的损失。同时我们也可以使用fl _ gamma参数来激活Focal
loss计算损失函数。

YOLO V4使用 CIOU Loss作为bounding box的损失,与其他提到的方法相比,CIOU带来了更快的收敛和更好的性能。

 

 

技术
©2019-2020 Toolsou All rights reserved,
STM32的内部温度传感器实验总结。JLink、STLink、DAPLink、CMSIS DAP使用区别Linux 常用的命令vue-loader+webpack项目配置《剑指offer刷题笔记》6、重建二叉树 【c++详细题解】pycharm中安装cv2失败,及其解决数据库基础-MySql8.0(第二篇)--DML和DQLpython模拟阴阳师抽卡CSS实现loading小动画二维哈希(矩阵哈希)