global_step变量用于保存全局训练步骤(global training step)的数值。

经常在滑动平均,学习速率变化的时候用到这个参数。

使用optimizer.minimize()可以自动更新global_step。

# -*-coding: utf-8-*- import tensorflow as tf import numpy as np x =
tf.placeholder(tf.float32, shape=[None, 1], name='x') y =
tf.placeholder(tf.float32, shape=[None, 1], name='y') w =
tf.Variable(tf.constant(0.0)) global_steps = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(0.1, global_steps, 10, 0.9,
staircase=False) loss = tf.pow(w*x - y, 2) train_op =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,
global_step=global_steps) with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) for i in range(10):
sess.run(train_op, feed_dict={x: np.linspace(1, 2, 10).reshape([10, 1]), y:
np.linspace(1, 2, 10).reshape([10, 1])}) print sess.run(learning_rate) print
sess.run(global_steps)

技术
©2019-2020 Toolsou All rights reserved,
HashMap详解某东14薪变16薪,是诚意还是套路?浏览器内核(理解)java四大函数式接口(重点,简单)html写樱花树,写樱花树的作文让人意想不到的Python之樱花树(turtle库的华丽样式)os模块的简单使用